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ELASTODYNAMICS IN PERIODIC MEDIA – APPROXIMATION
BY HIGHER ORDER HOMOGENIZATION AND

METAMATERIALS WITH RESONATORS
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Abstract: We consider elastodynamics in periodically heterogeneous solids described by 1D continua. The ho-
mogenization based on the higher order asymptotic expansions is applied to derive effective (macroscopic)
models. Relevance of these models is extended beyond the assumption of the perfect scale separation to respect
finite size of the heterogeneities. These models involve higher order gradients enabling to interpret models
of the generalized continua introduced using phenomenological approaches. Particular examples of bi- and
triple-layered periodic composites are explored in the context of the wave dispersion analysis. It appears that
a variety of models which approximate the response up to the 2nd order of accuracy with respect to the scale
parameter can be used, leading to different dispersion properties. Due to the volume forces involved in the
asymptotic analysis, structures with resonators can be represented to enhance band gap effects.
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1. Introduction

Wave propagation in periodically heterogeneous elastic media belongs to one of the most studied topics
in the field of composite materials. However, a unified satisfactory description of this phenomena in the
framework of the continuum mechanics remains cumbersome and ambiguities remains to interpret correctly
different modelling approaches. Phenomenological extended continuum based theories involving higher or-
der gradients provide micromechanically based models incorporating size effects and internal length scales,
though not straightforwardly related to a specific microstructure under consideration. The homogenization
based methods provide a promising alternative enabling to introduce internal length scales in a natural way.
The asymptotic based homogenization of the 1st order provides the limit model of the Cauchy medium,
where the microstructure size ` is infinitely small compared to a macroscopic size L, so that such mod-
els do not capture the dispersion properties emerging when wave lengths L 6� `. As the remedy, higher
order homogenization leads to models with effective material coefficients computed directly for a given
microstructure, whereby the internal length scale is retained. This issue has been discussed in several im-
portant works, namely comprising papers by Andrianov et al. (2008); Dontsov et al. (2013); Wautier and
Guzina (2015); Cornaggia and Guzina (2020); Schwan et al. (2021). The present short paper contributes to
these works by considering scale-dependent heterogeneity of the type reported in Rohan et al. (2009), such
that the dispersion due to the finite scale `/L interferes with the resonance features of the “metamaterial”
with soft elastic components.

2. Elastodynamics in a periodic 1D continuum

We consider domain Ω =]0, L[⊂ R occupied by an elastic solid whose properties are given by an elasticity
Eε and the density ρε, where ε = `/L is the scale parameter, the ratio of the characteristic length featuring
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the micro- and macroscopic scales, respectively. The solid is represented by the 1D periodically hetero-
geneous continuum generated by copies of the (zoomed) representative periodic cell, Y =]0, ȳ[, such that
Ωε =

⋃
k∈Z(εY + εkȳ), where εȳ = ` is the real sized period length. The heterogeneity can be introduced

via n subdomains Yi ⊂ Y , such that Y = Y1 ∪ · · · ∪ Yn, Yi ∩ Yj = ∅ for i 6= j.

Material parameters can be introduced due to the coordinated unfolding, x = ξ + εy with y ∈ Y and
ξ = ε[x/ε]Y being the “lattice coordinate”.In this context, the material properties, i.e. the elasticityEε(x) =
E(y) and the density ρε(x) = ρ(y) are assumed to be piecewise continuous (even piecewise constant) in
Yi ⊂ Y , being functions y = {x/ε}Y = (x − ξ)/ε. The unfolded spatial derivatives ∂̃x := ∂x + ε−1∂y
of the displacements are used to derive the usual cascade of equations correspondingly to the employed
asymptotic expansions.

Elastodynamic equation governing the displacement field uε is defined in any layer characterized by prop-
erties (Ei, ρi),

−∂̃x(Ei∂̃xu
ε) + ρi(∂

2
ttu

ε − f ε) = 0 , in any Ω× Yi , (1)

where f ε is a given generalized volume force.

3. Effective model with characteristic scales

3.1. Asymptotic analysis – higher order homogenization

In what follows, the time-dependence of displacement uε on t is considered, though t is not in the list of its
arguments. The asymptotic expansion of the displacement is considered in its unfolded form,

uε(x) =
∑

k=0,1,2,...

εkuk(x, y) , uk(x, y) = Uk(x) + ũk(x, y) , Uk(x) =
〈
uk(x, ·)

〉
Y
, (2)

where 〈 〉Y is the average in Y . These expansions are substituted in (1), where the differential oprerator is
unfolded

− Lεuε + ρ(üε − f ε) = 0 , x ∈ Ω, y ∈ Yi ,
with Lε(v) ≡ Lxx(v) + ε−1[Lxy(v) + Lyx(v)] + ε−2Lyy(v) ,

(3)

involving the differential operators Lyy◦ = ∂y(E(y)∂y◦), Lxy = ∂x(E(y)∂y◦), etc. Due to the linearity, for
k = 1, 2, 3, ũk can be expressed using the characteristic responses wk, k = 1, 2, 3 (the so-called correctors
of order εk), which are Y -periodic, i.e. wk(y) = wk(y + ȳ), satisfy in all subdomains Yi, i = 1, . . . , n the
following cascade of equations (complemented by interface conditions [wk] = 0 and [E∂yw

k +wk−1] = 0,
where [ ] is the jump on any interface between Yi and Yi+1)

−Lyyw1 = ∂yEw
0 , w0 ≡ 1 ,

−Lyywk+1 = ∂y(Ew
k) + E(∂yw

k + wk−1)− ρwk−1D0/ρ0 , for k = 1, 2 ,

−Lyyϕ3 = ρ(M1/ 〈ρ〉Y − w1) ,

(4)

involving ρ0 = 〈ρ〉Y and D0, the standard effective elasticity, as defined below. Then the effective medium
material properties can be computed

D0 =
〈
E(1 + ∂yw

1)
〉
Y
,

D2 =
〈
E(w2 + ∂yw

3)
〉
Y
,

Mk =
〈
ρwk

〉
Y
, k = 1, 2 ,

M3 =
〈
E∂yϕ

3
〉
Y
.

(5)

Based on (2), one can define the truncated averaged expansions of displacements U (2)(x, t) = U0 + εU1 +
ε2U2 and external forces F (2)(x, t) = F 0+εF 1+ε2F 2, such that the homogenized elastodynamic equation
providing an approximation of (1) up to o(ε2) accuracy attains the following form

Wtx ◦ U (2)(t, x) = Ftx ◦ F (2)(t, x) , (6)
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where the operatorsWtx and Ftx, being parameterized by α and β are given,

Wtx ◦ U(t, x) :=

(
1 + ε2r2(1− α− β)∂2xx + ε2r2

β

c20
∂2tt

)
∂2ttU(t, x)

−c20
[
1− ε2

(
r2α−D2/D0

)
∂2xx
]
∂2xxU(t, x) ,

Ftx ◦ F (t, x) :=

[
1− εM

1

ρ0
∂x − ε2r2

((
α− M̄3

M2

)
∂2xx +

β

c20
∂2tt

)]
F (t, x) ,

(7)

involving the sound speed c20 = D0/ρ0, and further coefficients r2 = M2/ρ0, and M̄3 = M3 + (M1)2

〈ρ〉
Y

. In,
principle, parameters α, β can be chosen, whereby constraints are to be considered to ensure the hyperbolic
character of (6), cf. Schwan et al. (2021). The external force F (2) can also be interpreted as the interaction
force imposed by “resonators”, as introduced below.

3.2. Periodic structures with resonators

The periodic structures like heterogeneous rods (rather than layered media) can be fitted with “ball-spring”
couples which can be tuned to induce the acoustic band gaps. In the context of the asymptotic homogeniza-
tion, these couples are characterized by the mass and the stiffness related proportionally to ε, see Rohan
et al. (2009), which leads to the negative effective mass in the 1st order homogenized model, i.e. for ε = 0.
Further we shall consider M1 = 0 (which holds for any 2-component material), β = 0 and α = M3/M2.
For such a special case, denoting by u(2)m the displacement of the resonator characterized by λm and Λm,

Wtx ◦ U (2) = Ftx ◦ F (2)(t, x) = 0 , with F (2) = Λm(u(2)m − U (2)) ,

∂2ttu
(2)
m + λm(u(2)m − U (2)) = 0 ,

(8)

whereby also the operatorWtx is reduced due to β = 0, yielding the following equation,

Λm∂
2
ttU

(2) + (λm + ∂2tt )
(
1 + ε2r2(1− α)∂2xx

)
∂2ttU

(2)

−c20(λm + ∂2tt )
[
1− ε2

(
r2α−D2/D0

)
∂2xx
]
∂2xxU

(2) = 0 .
(9)

3.3. Dispersion analysis

The influence of the higher order terms on the modelling of wave propagation can be studied using the
classical dispersion analysis. For this, using the plane wave ansatz involving the wave number κ and the
circular frequency ω is substituted in (6) which, in general, yields a bi-quadratic equation involving both
κ2k and ω2k, k = 1, 2. The dispersion can be analyzed using the mappings κ2 7→ ω2, or ω2 7→ κ2 =: γ.
For the latter alternative, the following quadratic equation is obtained for the model involving the resonators,

Aγ2 +Bγ + C = 0 , where

A = ε2c20(αr2 −D2/D0)(λm − ω2) ,

B = (λm − ω2)[c20 + ε2ω2r2(1− α)] ,

C = ω2[ω2 − (Λm + λm)] .

(10)

Propagating wave modes exist for positive roots γ = κ2 > 0, while negative roots γ = κ2 indicate band
gaps. When ε = 0, (10) reduces to one obtained for the 1st order homogenization result, ω = c0κ. For the
model without resonators, (10) still holds with Λm = λm = 0, which consequently enables to divide by ω2.
To illustrate the wave dispersion, we consider a simplified model extended only by ∂4xxxxU w.r.t. the 1st
order homogenized model, so that the microscopic length is involves in coefficient A through r2 and D2. In
particular, for a bi-laminate structure represented by Ej and ρj in layers Yj , j = 1, 2, we consider ρ1 = ρ2,
whereas E2 � E1, and put α = 1, β = 0, which yields (the case without resonators)

ω2 = Kε(κ2) := κ2c20

(
1− ε2D

2

D0
κ2

)
, (11)
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which clearly yields two real frequencies for any ε < (D0/(D2κ̄))1/4, noting that κ = εκ̄, where
κ̄ = 2π/ȳ is expressed in terms of the period length ȳ. It is of interest to explore the influence of the res-
onators; in this case, (10) leads to

ω4 −
(
Kε(κ2) + Λm + λm

)
ω2 − λmKε(κ2) = 0 . (12)

For ε = 0, (11) verifies the standard model, ω = c0κ =
√
K0(κ),however, due to the added resonators

characterized by Λm and λm, the band gap effect appears for ω ∈]
√
λm,
√
λm + Λm[. For ε > 0, also the

inner length `ε = εȳ is pronounced through the term κ4 in Kε, see Fig. 1. Of the 2 roots of the bi-quadratic
equation for γ = κ2, only one mode can propagate, if γ > 0, the stop bands are indicated for γ < 0.

Fig. 1: Dispersion analysis ω 7→ κ for the model with resonators, Eq. (10), attaining the form (12). Clear band gaps
between 4714 Hz and 9428 Hz. Four scales considered: ε ∈ {0.001, 01, 0.1, 1}.

4. Conclusion

The paper presents the higher order homogenization base modelling approach which provides the effective
elastodynamics models involving higher orders temporal and spatial derivatives, namely ∂4xxxxU , ∂4ttttU
and ∂2xx∂

2
ttU . Such models are comparable with the ones proposed on the purely phenomenological basis.

Moreover, specific metamaterial features can be introduced, providing many further perspectives in the
context of electro-mechanical devices with vast applications.
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