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Abstract: This study deals with the dynamics of non-stationary wave propagation in thick, homogeneous,
isotropic, elastic and viscoelastic plates, employing a combination of analytical and numerical approaches.
The first aim of this work is to efficiently enumerate the previously derived solution for transient wave prop-
agation in a thick elastic plate. For this purpose, a numerical inverse Laplace transform (NILT) algorithm is
used, which significantly improves computational efficiency. The results from this semi-analytical approach
were compared to those results obtained using a Finite Element (FE) model to ensure the accuracy and validity
of both methods. Additionally, the effect of viscoelasticity on wave propagation characteristics is discussed in
this work.
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1. Introduction

In this work, non-stationary waves in a thick elastic and viscoelastic plate are investigated using a numerical
and analytical approach. In contrast to the numerical solution, the knowledge of the analytical one can be
advantageously used in solving many inverse problems, especially due to its computational speed. This is
used, for example, to identify material properties, the source of excitation and to detect defects and factors
that could lead to a limited life and reliability of machines. One could find the application of this approach
in civil, aeronautical, mechanical and many other engineering fields.

The problem of wave propagation in an elastic thick plate was solved in the work of Valeš (1983), where
the solution for basic mechanical quantities in the Laplace domain was derived. The evaluation of the
derived formulas was then carried out in Pátek (1996) using the exact inverse Laplace transform based on
the dispersion curves calculation and on the use of the residue theorem. This approach is exact, but with
respect to high demands on CPU time, it is unsuitable for effective solving of inverse problems.

In view of this fact, the exact analytical inversion procedure will be replaced by the numerical inverse
Laplace transform (NILT), specifically using the algorithm presented in Brančı́k (1999), which is based on
the combination of FFT and Wynn’s algorithm (Cohen , 2007). The same algorithm proved to be suitable for
solving similar problems of transient waves as shown, e.g. in Šulda (2024). As known, every real material
shows some degree of damping, i.e. energy dissipation, and therefore this work will also focus on the
attenuation effects of the viscoelastic material on waves propagated in the plate. The discussion of this
effect will be based on a comparison with the elastic case.

2. Analytical solution for a thick elastic plate

An infinite thick plate of thickness 2d is considered. The plate is assumed to be in a cylindrical coordinate
system with r ∈ 〈0;∞〉 as the radial coordinate, ϑ ∈ 〈0; 2π〉 as the angular coordinate, and z ∈ 〈−d; d〉
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as the coordinate in the plate thickness direction. On the upper surface, i.e. z = −d, the plate is excited
by a constant transverse pressure of magnitude σ0 on a circular region of radius R. The remaining parts of
both plate surfaces are considered free of load. In such a case, the boundary conditions can be formulated
as follows

σz(r,−d, t) =

{
−σ0 for r < R

0 otherwise
, τrz(r,−d, t) = 0,

σz(r, d, t) = 0, τrz(r, d, t) = 0,

(1)

where the functions σz and τrz represent the normal stress in the z direction and the shear stress in the rz
plane, respectively. The equations of motion for such a plate can be derived using the Cauchy equations
formulated in the cylindrical coordinate system (Graff , 1991). Due to the rotational symmetry of the
problem, these equations will be independent of the coordinate ϑ. Substituting the kinematic equations for
small strains into the constitutive relations and then into the Cauchy equations, the following equations for
dilatation ∆ and rotation ωϑ can be obtained (Valeš, 1983)

∂2∆

∂t2
= c21

(
∂2∆

∂r2
+
∂2∆

∂z2
+

1

r

∂∆

∂r

)
,

∂2ωϑ

∂t2
= c22

(
∂2ωϑ

∂r2
+
∂2ωϑ

∂z2
+

1

r

∂ωϑ

∂r
− ωϑ

r2

)
,

(2)

where

∆ =
ur
r

+
∂ur
∂r

+
∂uz
∂z

, ωϑ =
1

2

(
∂ur
∂z
− ∂uz

∂r

)
. (3)

As clear, the system of partial differential equations (2) for ∆ and ωϑ is uncoupled in this case, which
significantly simplifies the solving procedure. The constants c1 =

√
(λ+ 2G)/ρ and c2 =

√
G/ρ denote

the phase velocity of dilatation and shear waves in an elastic continuum of the density ρ, the shear modulus
G and the Lame’s constant λ. The solution of the system (2) can be advantageously found using the
Laplace transform in time t and the Hankel transform in the spacial coordinate r. The resulting relations
for the Laplace transforms of displacements ur and uz can be written as (Valeš, 1983)
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(4)

where the real parameter γ is the variable of the Hankel transform, and p represents the complex variable
of the Laplace transform. The functions J0 and J1 are the Bessel functions of the first kind and of the zero
and first order. The remaining complex functions F3, F4, G3, G4, L, T , K1 introduced in (4) are mostly
defined as a combination of hyperbolic sines and cosines and can be found in Valeš (1983).

Considering the relations for the Laplace transforms of time derivatives and with respect to the zero initial
condition of the solved problem, one can write vr = pur, vz = puz for the transforms of velocities. The
formulas for displacement and velocity components were evaluated using a Matlab code. A plate with
the thickness of 2d = 40 mm was considered and excited with the constant pressure σ0 = 1 MPa at
a circular area with the radius R = 2 mm. The material parameters of the plate corresponded to steel, i.e.
ρ = 7 800 kg/m3, E = 2.11 · 1011 Pa and ν = 0.3. The resulting visualisation of wavefronts in one half
of the plate cross-section at times of 5, 10 and 20 µs is depicted using the velocity component vz in Fig. 1.
The vertical axis corresponds to the radial direction r and the horizontal one to the vertical coordinate z.
Different types of waves propagated in the plate by their characteristic velocities can be simply identified
from Fig. 1. The fastest is the dilatational wave (P-wave), which propagates at speed c1

.
= 6 020 m/s and

which is followed by a shear wave (S-wave) propagated with c2
.
= 3 218 m/s. The largest amplitude gains

the Rayleigh wave (R-wave), which travels on the free surface of the plate, and its speed can be estimated
as cR ≈ 0.92c2

.
= 2 960 m/s.

3. Comparison of semi-analytical results with results obtained by FEM

Regarding the fact that the analytical formulas are complex, it is advisable to use another method to verify
the evaluation procedure. For this purpose, an axisymmetric problem of a thick elastic plate of thickness
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Fig. 1: Velocity vz distribution in a thick steel plate.

40 mm and radius 100 mm was solved in the software MSC.Marc. The linear axisymmetric elements
(type 10) with the size 0.4 × 0.4 mm were used. To study the effect of energy dissipation, the viscoelastic
plate was also considered. The Young moduli of both plates correspond to polypropylene (PP) and were
chosen as E = 2.8090 ·109 Pa (see Šulda (2024)). The viscoelastic properties of the second plate was mod-
elled using the standard viscoelastic solid in Zener configuration, the parameters of which were identified
for a thin PP rod in Šulda (2024). These parameters are summarised in Tab. 1. With respect to the maximal
wave speed in these materials (c1 = 2 203 m/s) and to the mentioned size of elements, the integration time
step of the Newmark integration method was chosen as 1.82 · 10−7 s.

ρ [kg/m3] ν [-] EE [Pa] E1 [Pa] λ1 [Pa·s]

928.6 0.35 2.2608·109 5.4821·108 1.9099·104

Tab. 1: Material parameters of PP modelled by the standard viscoelastic solid (Zener model).

Fig. 2a) shows a comparison of the displacement uz for the z = −20 mm and r = 4 mm from both
approaches and for elastic and viscoelastic material up to time tmax = 100 µs. The compared results for
the elastic case have a maximum relative error of 1.1 %. Approximately from t = 88 µs, the numerical
results are influenced by the P-waves reflected from the plate boundary at r = 100 mm. On the other hand,
the effect of the finite dimension of the plate in the transverse direction z has a more significant impact in
both cases after the time of 35 µs (approx. 4d/c1) when the P-wave reflected from the bottom surface of
the plate arrived at the monitored point. After the R-wave passes this point (approx. 6.5 µs) and before the
arrival of the mentioned reflected P-wave, it can be seen that the excitation does not cause any change in
uz in the elastic case. In the viscoelastic case, a rising trend of uz occurs when constant stress is applied,
and thus, there is a remarkable deviation from the results for the elastic plate. Another change-point in the
results is at 75 µs. This time corresponds to the arrival of the reflected S-wave. These same changes in
solutions can be observed in Fig. 2b), where the displacement ur is shown at the same monitored location.
The results of the numerical and the semi-analytical elastic model deviate by the maximal relative error 3 %
up to tmax, except the initial arrival of the wave. In this region, the maximal relative error is 14 % in peaks.
Within this time interval, we can also observe the effect of energy dissipation resulting in a small decrease
in amplitudes. The viscoelastic case differs relatively from the elastic one in the mentioned peaks by 3 %.
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Fig. 2: Comparison of semi-analytical and numerical results obtained for elastic and viscoelastic plate.

4. Conclusions

The analytical solution for the non-stationary state of stress in a thick elastic plate under transverse pres-
sure loading previously derived in Valeš (1983) was evaluated using a numerical inverse Laplace transform
algorithm. Contrary to the traditional and exact evaluation procedure based on dispersion curves and resid-
ual theorem, this approach enables the effective calculation of plate response in the 2D domain. These
semi-analytical results agreed well with the results obtained by FE simulation performed in the software
MSC.Marc. The FE model was also used to study the effect of energy dissipation in short times.

This work is a starting point for the derivation of the analytical solution for (i) a similar problem of a thick
viscoelastic plate and (ii) a problem of a thick layered viscoelastic plate. The latter one could then be used
as an approximation of the response of a viscoelastic plate made of functionally graded material.

Acknowledgment

The publication was supported by the project SGS-2022-008 and by the grant GA 22-00863K.

References
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