Proceedings Vol. 20 (2014)
ENGINEERING MECHANICS 2014
May 12 – 15, 2014, Svratka, Czech Republic
Copyright © 2014 Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics
ISSN 1805-8248 (printed)
ISSN 1805-8256 (electronic)
list of papers scientific commitee
pages 726 - 729, full text
The reconstruction of the video-kymographic records from the numerical simulation of the vocal fold vibration is used for prediction of the type of vocal fold damaged. Three-dimensional (3D) finite element (FE) fully parametric model of the human larynx was developed and used for numerical simulation of stresses during vibrating vocal folds with collisions. The complex model consists of the vocal folds, arytenoids, thyroid and cricoid cartilages. The vocal fold tissue is modeled as a three layered transversal isotropic material. The results of numerical simulation of the vocal folds oscillations excited by a prescribed intraglottal aerodynamic pressure are presented. The FE contact elements are used for modelling the vocal folds collisions and the stresses in the vocal fold tissue are computed in time domain. The damaged of the ligament tissue is simulated by the modification of the modulus of elasticity. The video-kymographic records are reconstructed for health and damaged vocal folds. The results show significant dynamic stresses in all there directions (horizontal, vertical and anterior-posterior).
back to list of papers
Text and facts may be copied and used freely, but credit should be given to these Proceedings.
All papers were reviewed by members of the scientific committee.