Proceedings Vol. 23 (2017)
ENGINEERING MECHANICS 2017
May 15 – 18, 2017, Svratka, Czech Republic
Copyright © 2017 Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno
ISSN 1805-8248 (printed)
ISSN 1805-8256 (electronic)
list of papers scientific commitee
pages 862 - 865, full text
The contribution deals with numerical simulation of response of the open cell ceramic foam to tensile loading and attempts to predict experimental fracture-mechanics behaviour of the foams using numerical FE model composed of beam elements. Models of different structure irregularity (including regular one) are considered and generated using 3D Voronoi tessellation technique. Complete fracture of the model is simulated by iterative FE simulations where in each step, one strut with maximal tensile stress (higher than the material tensile strength) is removed – until complete separation of the model in two parts. Critical forces, leading to complete breakage of the foam structure, together with final fracture “surfaces”, are investigated and compared for both regular and irregular structures. It is shown that the regular foam structure, composed of Kelvin cells, exhibit generally 10 – 20 % higher fracture resistance than the irregular foam structures and also that structures with smaller cells should be more fracture resistant than the structures with bigger cells.
back to list of papers
Text and facts may be copied and used freely, but credit should be given to these Proceedings.
All papers were reviewed by members of the scientific committee.